Estimating Missing Data in Data Streams
نویسندگان
چکیده
Networks of thousands of sensors present a feasible and economic solution to some of our most challenging problems, such as real-time traffic modeling, military sensing and tracking. Many research projects have been conducted by different organizations regarding wireless sensor networks; however, few of them discuss how to estimate missing sensor data. In this research we present a novel data estimation technique based on association rules derived from closed frequent itemsets generated by sensors. Experimental results compared with the existing techniques using real-life sensor data show that closed itemset mining effectively imputes missing values as well as achieves time and space efficiency.
منابع مشابه
A blended model for estimating of missing precipitation data (Case study of Tehran - Mehrabad station)
Meteorological stations usually contain some missing data for different reasons.There are several traditional methods for completing data, among them bivariate and multivariate linear and non-linear correlation analysis, double mass curve, ratio and difference methods, moving average and probability density functions are commonly used. In this paper a blended model comprising the bivariate expo...
متن کاملDEA with Missing Data: An Interval Data Assignment Approach
In the classical data envelopment analysis (DEA) models, inputs and outputs are assumed as known variables, and these models cannot deal with unknown amounts of variables directly. In recent years, there are few researches on handling missing data. This paper suggests a new interval based approach to apply missing data, which is the modified version of Kousmanen (2009) approach. First, the prop...
متن کاملEstimating Missing Temporal Attributes In Genealogical Data
We present a machine learning approach for estimating missing temporal attributes in genealogical data. Genealogy analyses have been commonly focused on understanding generational relations. The importance of temporal analyses has often been suppresed in genealogical research. We have observed that temporal attributes of an individual, birth, death, marriage and divorce dates, are frequently mi...
متن کاملPrediction of Missing Events in Sensor Data Streams Using Kalman Filters
Sensors and instruments are an important source of real time data. However, sensor networks and instruments and their delivery systems can fail due to intrusion attacks, node failures, link failures, or problems in the measuring instruments. Missing data can cause prediction inaccuracies or problems in the continuous events processing process. Estimation techniques can approximate missing data ...
متن کاملEstimating Missing Data in Temporal Data Streams Using Multi-directional Recurrent Neural Networks
Missing data is a ubiquitous problem. It is especially challenging in medical settings because many streams of measurements are collected at different – and often irregular – times. Accurate estimation of those missing measurements is critical for many reasons, including diagnosis, prognosis and treatment. Existing methods address this estimation problem by interpolating within data streams or ...
متن کاملInvestigating the missing data effect on credit scoring rule based models: The case of an Iranian bank
Credit risk management is a process in which banks estimate probability of default (PD) for each loan applicant. Data sets of previous loan applicants are built by gathering their data, and these internal data sets are usually completed using external credit bureau’s data and finally used for estimating PD in banks. There is also a continuous interest for bank to use rule based classifiers to b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007